Re-using gradient computations in automatic variational inference

نویسندگان

  • Joseph Sakaya
  • Arto Klami
چکیده

Automatic variational inference has recently become feasible as a scalable inference tool for probabilistic programming. The state-of-the-art algorithms are stochastic in two respects: they use stochastic gradient descent to optimize an expectation that is estimated with stochastic approximation. The core computation of such algorithms involves evaluating the loss and its automatically differentiated gradient for random parameters sampled from the approximation. We study ways of re-using some of the gradient computations during optimization, to speed up learning for large-scale applications. We present a stochastic average gradient algorithm that uses gradients computed for past mini-batches to reduce noise, and explain how importance sampling allows re-using gradients computed for data samples visited again during the optimization loop.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conjugate-Computation Variational Inference: Converting Variational Inference in Non-Conjugate Models to Inferences in Conjugate Models

Variational inference is computationally challenging in models that contain both conjugate and non-conjugate terms. Methods specifically designed for conjugate models, even though computationally efficient, find it difficult to deal with non-conjugate terms. On the other hand, stochastic-gradient methods can handle the nonconjugate terms but they usually ignore the conjugate structure of the mo...

متن کامل

Importance Sampled Stochastic Optimization for Variational Inference

Variational inference approximates the posterior distribution of a probabilistic model with a parameterized density by maximizing a lower bound for the model evidence. Modern solutions fit a flexible approximation with stochastic gradient descent, using Monte Carlo approximation for the gradients. This enables variational inference for arbitrary differentiable probabilistic models, and conseque...

متن کامل

Automatic Variational ABC

Approximate Bayesian Computation (ABC) is a framework for performing likelihood-free posterior inference for simulation models. Stochastic Variational inference (SVI) is an appealing alternative to the inefficient sampling approaches commonly used in ABC. However, SVI is highly sensitive to the variance of the gradient estimators, and this problem is exacerbated by approximating the likelihood....

متن کامل

Decoupled Variational Gaussian Inference

Variational Gaussian (VG) inference methods that optimize a lower bound to the marginal likelihood are a popular approach for Bayesian inference. A difficulty remains in computation of the lower bound when the latent dimensionality L is large. Even though the lower bound is concave for many models, its computation requires optimization over O(L) variational parameters. Efficient reparameterizat...

متن کامل

Effect of random perturbations on adaptive observation techniques

An observation sensitivity method to identify targeted observations is implemented in the context of four dimensional variational (4D-Var) data assimilation. This methodology is compared with the well-established adjoint sensitivity method using a nonlinear Burgers equation as a test model. Automatic differentiation software is used to implement the first order adjoint model to calculate the gr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016